/* eslint-disable @next/next/no-img-element */ "use client"; import 'katex/dist/katex.min.css'; import React, { useRef, useCallback, useState, useEffect, useMemo, Suspense } from 'react'; import ReactMarkdown from 'react-markdown'; import { useTheme } from 'next-themes'; import Marked, { ReactRenderer } from 'marked-react'; import { track } from '@vercel/analytics'; import { useSearchParams } from 'next/navigation'; import { useChat } from 'ai/react'; import { ToolInvocation } from 'ai'; import { toast } from 'sonner'; import { motion, AnimatePresence } from 'framer-motion'; import Image from 'next/image'; import { fetchMetadata, generateSpeech, suggestQuestions } from '../actions'; import { Wave } from "@foobar404/wave"; import { Prism as SyntaxHighlighter } from 'react-syntax-highlighter'; import { oneLight, oneDark } from 'react-syntax-highlighter/dist/esm/styles/prism'; import { Sparkles, ArrowRight, Globe, AlignLeft, Copy, Cloud, Code, Check, Loader2, User2, Heart, X, MapPin, Plus, Download, Flame, Sun, Terminal, Pause, Play, TrendingUpIcon, Calendar, Calculator, ChevronDown, Edit2, ChevronUp, Moon, ShoppingBasket, Star, Truck, YoutubeIcon, LucideIcon, PlayCircle, FileText, Book, Eye, ExternalLink, Building } from 'lucide-react'; import { HoverCard, HoverCardContent, HoverCardTrigger, } from "@/components/ui/hover-card"; import { Tabs, TabsContent, TabsList, TabsTrigger } from "@/components/ui/tabs" import { Accordion, AccordionContent, AccordionItem, AccordionTrigger, } from "@/components/ui/accordion"; import { Tooltip, TooltipContent, TooltipProvider, TooltipTrigger, } from "@/components/ui/tooltip" import { Input } from '@/components/ui/input'; import { Button } from '@/components/ui/button'; import { Badge } from '@/components/ui/badge'; import { Card, CardContent, CardHeader, CardTitle, } from "@/components/ui/card"; import { Sheet, SheetContent, SheetHeader, SheetTitle, SheetTrigger } from "@/components/ui/sheet"; import { Drawer, DrawerContent, DrawerHeader, DrawerTitle, DrawerTrigger } from "@/components/ui/drawer"; import { GitHubLogoIcon } from '@radix-ui/react-icons'; import Link from 'next/link'; import { Dialog, DialogContent } from "@/components/ui/dialog"; import { Carousel, CarouselContent, CarouselItem } from "@/components/ui/carousel"; import { cn, SearchGroupId } from '@/lib/utils'; import { Table, TableBody, TableCell, TableRow, } from "@/components/ui/table"; import Autoplay from 'embla-carousel-autoplay'; import FormComponent from '@/components/ui/form-component'; import WeatherChart from '@/components/weather-chart'; import InteractiveChart from '@/components/interactive-charts'; import { MapComponent, MapContainer, MapSkeleton } from '@/components/map-components'; import MultiSearch from '@/components/multi-search'; import { RedditLogo, RoadHorizon, XLogo } from '@phosphor-icons/react'; import { BorderTrail } from '@/components/core/border-trail'; import { TextShimmer } from '@/components/core/text-shimmer'; import { Tweet } from 'react-tweet'; import NearbySearchMapView from '@/components/nearby-search-map-view'; import { Place } from '../../components/map-components'; import { Separator } from '@/components/ui/separator'; import { ChartTypes } from '@e2b/code-interpreter'; export const maxDuration = 60; interface Attachment { name: string; contentType: string; url: string; size: number; } interface ShoppingProduct { title: string; url: string; image: string; price: string; rating?: number; reviewCount?: number; } interface RedditResult { title: string; url: string; subreddit?: string; score?: number; } interface XResult { id: string; url: string; title: string; author?: string; publishedDate?: string; text: string; highlights?: string[]; tweetId: string; } interface YouTubeVideo { title: string; link: string; snippet?: string; imageUrl?: string; duration?: string; source?: string; channel?: string; date?: string; } interface AcademicResult { title: string; url: string; author?: string | null; publishedDate?: string; summary: string; } interface YouTubeVideo { videoId: string; url: string; title: string; description?: string; author?: string; publishedDate?: string; views?: string; likes?: string; subscribers?: string; summary?: string; thumbnail?: string; } /* Mapbox API interfaces */ interface MapboxCoordinates { longitude: number; latitude: number; } interface MapboxContext { street?: { mapbox_id: string; name: string; }; postcode?: { mapbox_id: string; name: string; }; locality?: { mapbox_id: string; name: string; wikidata_id?: string; }; place?: { mapbox_id: string; name: string; wikidata_id?: string; }; district?: { mapbox_id: string; name: string; wikidata_id?: string; }; region?: { mapbox_id: string; name: string; wikidata_id?: string; region_code?: string; region_code_full?: string; }; country?: { mapbox_id: string; name: string; wikidata_id?: string; country_code: string; country_code_alpha_3: string; }; } interface MapboxFeature { id: string; type: string; geometry: { type: string; coordinates: [number, number]; // [longitude, latitude] }; properties: { mapbox_id: string; feature_type: 'street' | 'locality' | 'address' | string; name: string; name_preferred?: string; full_address?: string; coordinates: MapboxCoordinates; place_formatted?: string; bbox?: [number, number, number, number]; context?: MapboxContext; }; } // Simplified feature interface for the UI interface SimplifiedFeature { id: string; name: string; formatted_address?: string; geometry: { type: string; coordinates: [number, number]; }; context?: MapboxContext; place_formatted?: string; feature_type: string; coordinates: MapboxCoordinates; bbox?: [number, number, number, number]; } /* Mapbox API interfaces end */ // Updated SearchLoadingState with new colors and states const SearchLoadingState = ({ icon: Icon, text, color }: { icon: LucideIcon, text: string, color: "red" | "green" | "orange" | "violet" | "gray" | "blue" }) => { // Map of color variants const colorVariants = { red: { background: "bg-red-50 dark:bg-red-950", border: "from-red-200 via-red-500 to-red-200 dark:from-red-400 dark:via-red-500 dark:to-red-700", text: "text-red-500", icon: "text-red-500" }, green: { background: "bg-green-50 dark:bg-green-950", border: "from-green-200 via-green-500 to-green-200 dark:from-green-400 dark:via-green-500 dark:to-green-700", text: "text-green-500", icon: "text-green-500" }, orange: { background: "bg-orange-50 dark:bg-orange-950", border: "from-orange-200 via-orange-500 to-orange-200 dark:from-orange-400 dark:via-orange-500 dark:to-orange-700", text: "text-orange-500", icon: "text-orange-500" }, violet: { background: "bg-violet-50 dark:bg-violet-950", border: "from-violet-200 via-violet-500 to-violet-200 dark:from-violet-400 dark:via-violet-500 dark:to-violet-700", text: "text-violet-500", icon: "text-violet-500" }, gray: { background: "bg-neutral-50 dark:bg-neutral-950", border: "from-neutral-200 via-neutral-500 to-neutral-200 dark:from-neutral-400 dark:via-neutral-500 dark:to-neutral-700", text: "text-neutral-500", icon: "text-neutral-500" }, blue: { background: "bg-blue-50 dark:bg-blue-950", border: "from-blue-200 via-blue-500 to-blue-200 dark:from-blue-400 dark:via-blue-500 dark:to-blue-700", text: "text-blue-500", icon: "text-blue-500" } }; const variant = colorVariants[color]; return (
{text}
{[...Array(3)].map((_, i) => (
))}
); }; // Base YouTube Types interface VideoDetails { title?: string; author_name?: string; author_url?: string; thumbnail_url?: string; type?: string; provider_name?: string; provider_url?: string; height?: number; width?: number; } interface VideoResult { videoId: string; url: string; details?: VideoDetails; captions?: string; timestamps?: string[]; views?: string; likes?: string; summary?: string; } interface YouTubeSearchResponse { results: VideoResult[]; } // UI Component Types interface YouTubeCardProps { video: VideoResult; index: number; } const YouTubeCard: React.FC = ({ video, index }) => { const [timestampsExpanded, setTimestampsExpanded] = useState(false); const [transcriptExpanded, setTranscriptExpanded] = useState(false); if (!video) return null; return ( {/* Thumbnail */} {video.details?.thumbnail_url ? ( {video.details?.title ) : (
)}
{/* Title and Channel */}
{video.details?.title || 'YouTube Video'} {video.details?.author_name && (
{video.details.author_name} )}
{/* Interactive Sections */} {(video.timestamps && video.timestamps?.length > 0 || video.captions) && (
{/* Timestamps */} {video.timestamps && video.timestamps.length > 0 && (

Key Moments

{video.timestamps .slice(0, timestampsExpanded ? undefined : 3) .map((timestamp, i) => (
{timestamp}
))}
)} {/* Transcript */} {video.captions && ( <> {video.timestamps && video.timestamps!.length > 0 && }

Transcript

{transcriptExpanded && (

{video.captions}

)}
)}
)}
); }; const HomeContent = () => { const searchParams = useSearchParams(); // Memoize initial values to prevent re-calculation const initialState = useMemo(() => ({ query: searchParams.get('query') || '', model: searchParams.get('model') || 'azure:gpt4o-mini' }), []); // Empty dependency array as we only want this on mount const lastSubmittedQueryRef = useRef(initialState.query); const [hasSubmitted, setHasSubmitted] = useState(() => !!initialState.query); const [selectedModel, setSelectedModel] = useState(initialState.model); const bottomRef = useRef(null); const [suggestedQuestions, setSuggestedQuestions] = useState([]); const [isEditingMessage, setIsEditingMessage] = useState(false); const [editingMessageIndex, setEditingMessageIndex] = useState(-1); const [attachments, setAttachments] = useState([]); const fileInputRef = useRef(null); const inputRef = useRef(null); const initializedRef = useRef(false); const [selectedGroup, setSelectedGroup] = useState('web'); const { theme } = useTheme(); const [openChangelog, setOpenChangelog] = useState(false); const { isLoading, input, messages, setInput, append, handleSubmit, setMessages, reload, stop } = useChat({ maxSteps: 10, body: { model: selectedModel, group: selectedGroup, }, onFinish: async (message, { finishReason }) => { console.log("[finish reason]:", finishReason); if (message.content && finishReason === 'stop' || finishReason === 'length') { const newHistory = [...messages, { role: "user", content: lastSubmittedQueryRef.current }, { role: "assistant", content: message.content }]; const { questions } = await suggestQuestions(newHistory); setSuggestedQuestions(questions); } }, onError: (error) => { console.error("Chat error:", error.cause, error.message); toast.error("An error occurred.", { description: "We must have ran out of credits. Sponsor us on GitHub to keep this service running.", action: { label: "Sponsor", onClick: () => window.open("https://git.new/mplx", "_blank"), }, }); }, }); useEffect(() => { if (!initializedRef.current && initialState.query && !messages.length) { initializedRef.current = true; setHasSubmitted(true); console.log("[initial query]:", initialState.query); append({ content: initialState.query, role: 'user' }); } }, [initialState.query, append, setInput, messages.length]); const ThemeToggle: React.FC = () => { const { theme, setTheme } = useTheme(); return ( ); }; const CopyButton = ({ text }: { text: string }) => { const [isCopied, setIsCopied] = useState(false); return ( ); }; type Changelog = { id: string; images: string[]; content: string; title: string; }; const changelogs: Changelog[] = [ { id: "1", title: "New Updates!", images: [ "https://metwm7frkvew6tn1.public.blob.vercel-storage.com/mplx-changelogs/mplx-new-claude-models.png", "https://metwm7frkvew6tn1.public.blob.vercel-storage.com/mplx-changelogs/mplx-nearby-search-maps-demo.png", "https://metwm7frkvew6tn1.public.blob.vercel-storage.com/mplx-changelogs/mplx-multi-search-demo.png" ], content: `## **Nearby Map Search Beta** The new Nearby Map Search tool is now available in beta! You can use it to find nearby places, restaurants, attractions, and more. Give it a try and let us know what you think! ## **Multi Search is here by default** The AI powered Multiple Query Search tool is now available by default. The LLM model will now automatically suggest multiple queries based on your input and run the searches in parallel. ## **Claude 3.5 Sonnet(New) and 3.5 Haiku are here!** The new Anthropic models: Claude 3.5 Sonnet and 3.5 Haiku models are now available on the platform. ` } ]; const ChangeLogs: React.FC<{ open: boolean; setOpen: (open: boolean) => void }> = ({ open, setOpen }) => { return (

What's new

{changelogs.map((changelog) => (
{changelog.images.map((image, index) => ( {changelog.title} ))}

{changelog.title}

(

), p: ({ node, className, ...props }) => (

), }} className="text-sm" > {changelog.content}

))}
); }; const TranslationTool: React.FC<{ toolInvocation: ToolInvocation; result: any }> = ({ toolInvocation, result }) => { const [isPlaying, setIsPlaying] = useState(false); const [audioUrl, setAudioUrl] = useState(null); const [isGeneratingAudio, setIsGeneratingAudio] = useState(false); const audioRef = useRef(null); const canvasRef = useRef(null); const waveRef = useRef(null); useEffect(() => { return () => { if (audioRef.current) { audioRef.current.pause(); audioRef.current.src = ''; } }; }, []); useEffect(() => { if (audioUrl && audioRef.current && canvasRef.current) { waveRef.current = new Wave(audioRef.current, canvasRef.current); waveRef.current.addAnimation(new waveRef.current.animations.Lines({ lineColor: "rgb(203, 113, 93)", lineWidth: 2, mirroredY: true, count: 100, })); } }, [audioUrl]); const handlePlayPause = async () => { if (!audioUrl && !isGeneratingAudio) { setIsGeneratingAudio(true); try { const { audio } = await generateSpeech(result.translatedText, 'alloy'); setAudioUrl(audio); setIsGeneratingAudio(false); } catch (error) { console.error("Error generating speech:", error); setIsGeneratingAudio(false); } } else if (audioRef.current) { if (isPlaying) { audioRef.current.pause(); } else { audioRef.current.play(); } setIsPlaying(!isPlaying); } }; const handleReset = () => { if (audioRef.current) { audioRef.current.pause(); audioRef.current.currentTime = 0; setIsPlaying(false); } }; if (!result) { return (
); } return (
The phrase {toolInvocation.args.text} translates from {result.detectedLanguage} to {toolInvocation.args.to} as {result.translatedText} in {toolInvocation.args.to}.
{audioUrl && (
); }; interface TableData { title: string; content: string; } interface ResultsOverviewProps { result: { image: string; title: string; description: string; table_data: TableData[]; }; } const ResultsOverview: React.FC = React.memo(({ result }) => { const [showAll, setShowAll] = useState(false); const visibleData = useMemo(() => { return showAll ? result.table_data : result.table_data.slice(0, 3); }, [showAll, result.table_data]); return (
{result.image && (
{result.title}
)}
{result.title}

{result.description}

{visibleData.map((item, index) => ( {item.title} {item.content} ))}
{result.table_data.length > 3 && ( )}
); }); ResultsOverview.displayName = 'ResultsOverview'; const renderToolInvocation = useCallback( (toolInvocation: ToolInvocation, index: number) => { const args = JSON.parse(JSON.stringify(toolInvocation.args)); const result = 'result' in toolInvocation ? JSON.parse(JSON.stringify(toolInvocation.result)) : null; // Find place results if (toolInvocation.toolName === 'find_place') { if (!result) { return ; } const { features } = result; if (!features || features.length === 0) return null; return ( {/* Map Container */}
{features.length} Locations Found
({ name: feature.name, location: { lat: feature.geometry.coordinates[1], lng: feature.geometry.coordinates[0], }, vicinity: feature.formatted_address, }))} zoom={features.length > 1 ? 12 : 15} />
{/* Place Details Footer */}
{features.map((place: any, index: any) => { const isGoogleResult = place.source === 'google'; return (
{place.feature_type === 'street_address' || place.feature_type === 'street' ? ( ) : place.feature_type === 'locality' ? ( ) : ( )}

{place.name}

{place.formatted_address && (

{place.formatted_address}

)} {place.feature_type.replace(/_/g, ' ')}
Copy Coordinates View in Maps
); })}
); } // Shopping search results if (toolInvocation.toolName === 'shopping_search') { if (!result) { return ; } return (
Shopping Results

Scroll to see more products

{result.map((product: ShoppingProduct) => (
{product.title} {product.rating && (
{product.rating}
)}
{product.title}

{product.price}

))}
); } if (toolInvocation.toolName === 'x_search') { if (!result) { return ; } const PREVIEW_COUNT = 3; // Shared content component const FullTweetList = () => (
{result.map((post: XResult, index: number) => ( ))}
); return (
Latest from X

{result.length} tweets found

{result.slice(0, PREVIEW_COUNT).map((post: XResult, index: number) => ( ))}
{/* Gradient overlay */}
{/* Show More Buttons - Desktop Sheet */}
{/* Desktop Sheet */}
All Tweets
{/* Mobile Drawer */}
All Tweets
); } if (toolInvocation.toolName === 'youtube_search') { if (!result) { return ; } const youtubeResult = result as YouTubeSearchResponse; return (

YouTube Results

{youtubeResult.results.length} videos
{youtubeResult.results.map((video, index) => ( ))}
); } // Academic search results continued... if (toolInvocation.toolName === 'academic_search') { if (!result) { return ; } return (
Academic Papers

Found {result.results.length} papers

{result.results.map((paper: AcademicResult, index: number) => (
{/* Background with gradient border */}
{/* Main content container */}
{/* Title */}

{paper.title}

{/* Authors with better overflow handling */} {paper.author && (
{paper.author.split(';') .slice(0, 2) // Take first two authors .join(', ') + (paper.author.split(';').length > 2 ? ' et al.' : '') }
)} {/* Date if available */} {paper.publishedDate && (
{new Date(paper.publishedDate).toLocaleDateString()}
)} {/* Summary with gradient border */}

{paper.summary}

{/* Actions */}
{paper.url.includes('arxiv.org') && ( )}
))}
); } if (toolInvocation.toolName === 'nearby_search') { if (!result) { return (
Finding nearby {args.type}...
{[0, 1, 2].map((index) => ( ))}
); } console.log(result); return (
); } if (toolInvocation.toolName === 'text_search') { if (!result) { return (
Searching places...
{[0, 1, 2].map((index) => ( ))}
); } const centerLocation = result.results[0]?.geometry?.location; return ( ({ name: place.name, location: place.geometry.location, vicinity: place.formatted_address }))} /> ); } if (toolInvocation.toolName === 'get_weather_data') { if (!result) { return (
Fetching weather data...
{[0, 1, 2].map((index) => ( ))}
); } return ; } if (toolInvocation.toolName === 'programming') { return (

Programming

{!result ? ( Executing ) : ( Executed )}
{args.icon === 'stock' && } {args.icon === 'default' && } {args.icon === 'date' && } {args.icon === 'calculation' && } {args.title}
Code Output {result?.images && result.images.length > 0 && ( Images )} {result?.chart && ( Visualization )}
{args.code}
{result ? ( <>
                                                            {result.message}
                                                        
) : (
Executing code...
)}
{result?.images && result.images.length > 0 && (
{result.images.map((img: { format: string, url: string }, imgIndex: number) => (

Image {imgIndex + 1}

{img.url && img.url.trim() !== '' && ( )}
{img.url && img.url.trim() !== '' ? ( {`Generated ) : (
Image upload failed or URL is empty
)}
))}
)} {result?.chart && ( )}
); } if (toolInvocation.toolName === 'web_search') { return (
); } if (toolInvocation.toolName === 'retrieve') { if (!result) { return (
Retrieving content...
{[0, 1, 2].map((index) => ( ))}
); } return (

Retrieved Content

{result.results[0].title}

{result.results[0].description}

{result.results[0].language || 'Unknown language'} Source
View Content
{result.results[0].content}
); } if (toolInvocation.toolName === 'text_translate') { return ; } if (toolInvocation.toolName === 'results_overview') { if (!result) { return (
Generating overview...
); } return ; } return null; }, [ResultsOverview, theme] ); interface MarkdownRendererProps { content: string; } interface CitationLink { text: string; link: string; } interface LinkMetadata { title: string; description: string; } const isValidUrl = (str: string) => { try { new URL(str); return true; } catch { return false; } }; const MarkdownRenderer: React.FC = ({ content }) => { const [metadataCache, setMetadataCache] = useState>({}); const citationLinks = useMemo(() => { return Array.from(content.matchAll(/\[([^\]]+)\]\(([^)]+)\)/g)).map(([_, text, link]) => ({ text, link, })); }, [content]); const fetchMetadataWithCache = useCallback(async (url: string) => { if (metadataCache[url]) { return metadataCache[url]; } const metadata = await fetchMetadata(url); if (metadata) { setMetadataCache(prev => ({ ...prev, [url]: metadata })); } return metadata; }, [metadataCache]); const CodeBlock = ({ language, children }: { language: string | undefined; children: string }) => { const [isCopied, setIsCopied] = useState(false); const handleCopy = async () => { await navigator.clipboard.writeText(children); setIsCopied(true); setTimeout(() => setIsCopied(false), 2000); }; return (
{children}
); }; const LinkPreview = ({ href }: { href: string }) => { const [metadata, setMetadata] = useState(null); const [isLoading, setIsLoading] = useState(false); React.useEffect(() => { setIsLoading(true); fetchMetadataWithCache(href).then((data) => { setMetadata(data); setIsLoading(false); }); }, [href]); if (isLoading) { return (
); } const domain = new URL(href).hostname; return (
Favicon {domain}

{metadata?.title || "Untitled"}

{metadata?.description && (

{metadata.description}

)}
); }; const renderHoverCard = (href: string, text: React.ReactNode, isCitation: boolean = false) => { return ( {text} ); }; const renderer: Partial = { paragraph(children) { return

{children}

; }, code(children, language) { return {String(children)}; }, link(href, text) { const citationIndex = citationLinks.findIndex(link => link.link === href); if (citationIndex !== -1) { return ( {renderHoverCard(href, citationIndex + 1, true)} ); } return isValidUrl(href) ? renderHoverCard(href, text) : {text}; }, heading(children, level) { const HeadingTag = `h${level}` as keyof JSX.IntrinsicElements; const className = `text-${4 - level}xl font-bold my-4 text-neutral-800 dark:text-neutral-100`; return {children}; }, list(children, ordered) { const ListTag = ordered ? 'ol' : 'ul'; return {children}; }, listItem(children) { return
  • {children}
  • ; }, blockquote(children) { return
    {children}
    ; }, }; return (
    {content}
    ); }; const lastUserMessageIndex = useMemo(() => { for (let i = messages.length - 1; i >= 0; i--) { if (messages[i].role === 'user') { return i; } } return -1; }, [messages]); useEffect(() => { if (bottomRef.current) { bottomRef.current.scrollIntoView({ behavior: "smooth" }); } }, [messages, suggestedQuestions]); const handleExampleClick = async (card: typeof suggestionCards[number]) => { const exampleText = card.text; track("search example", { query: exampleText }); lastSubmittedQueryRef.current = exampleText; setHasSubmitted(true); setSuggestedQuestions([]); console.log('exampleText', exampleText); console.log('lastSubmittedQuery', lastSubmittedQueryRef.current); await append({ content: exampleText.trim(), role: 'user', }); }; const handleSuggestedQuestionClick = useCallback(async (question: string) => { setHasSubmitted(true); setSuggestedQuestions([]); await append({ content: question.trim(), role: 'user' }); }, [append]); const handleMessageEdit = useCallback((index: number) => { setIsEditingMessage(true); setEditingMessageIndex(index); setInput(messages[index].content); }, [messages, setInput]); const handleMessageUpdate = useCallback((e: React.FormEvent) => { e.preventDefault(); if (input.trim()) { const updatedMessages = [...messages]; updatedMessages[editingMessageIndex] = { ...updatedMessages[editingMessageIndex], content: input.trim() }; setMessages(updatedMessages); setIsEditingMessage(false); setEditingMessageIndex(-1); handleSubmit(e); } else { toast.error("Please enter a valid message."); } }, [input, messages, editingMessageIndex, setMessages, handleSubmit]); const suggestionCards = [ { icon: , text: "Shah Rukh Khan", }, { icon: , text: "Weather in Doha", }, { icon: , text: "Count the no. of r's in strawberry?", }, ]; interface NavbarProps { } const Navbar: React.FC = () => { return (

    Sponsor this project on GitHub

    ); }; const SuggestionCards: React.FC<{ selectedModel: string }> = ({ selectedModel }) => { return (
    {suggestionCards.map((card, index) => ( ))}
    ); }; const handleModelChange = useCallback((newModel: string) => { setSelectedModel(newModel); setSuggestedQuestions([]); reload({ body: { model: newModel } }); }, [reload]); const resetSuggestedQuestions = useCallback(() => { setSuggestedQuestions([]); }, []); // const memoizedMessages = useMemo(() => messages, [messages]); return (
    {!hasSubmitted && (
    setOpenChangelog(true)} className="cursor-pointer gap-1 mb-2 bg-green-100 dark:bg-green-900 text-green-800 dark:text-green-200" variant="secondary" > What's new

    MiniPerplx

    In search for minimalism and simplicity

    )} {!hasSubmitted && ( )}
    {messages.map((message, index) => (
    {message.role === 'user' && (
    {isEditingMessage && editingMessageIndex === index ? (
    setInput(e.target.value)} className="flex-grow bg-white dark:bg-neutral-800 text-neutral-900 dark:text-neutral-100" />
    ) : (

    {message.content}

    {message.experimental_attachments?.map((attachment, attachmentIndex) => (
    {attachment.contentType!.startsWith('image/') && ( {attachment.name )}
    ))}
    )}
    {!isEditingMessage && index === lastUserMessageIndex && (
    )}
    )} {message.role === 'assistant' && message.content !== null && !message.toolInvocations && (

    Answer

    )} {message.toolInvocations?.map((toolInvocation: ToolInvocation, toolIndex: number) => (
    {renderToolInvocation(toolInvocation, toolIndex)}
    ))}
    ))} {suggestedQuestions.length > 0 && (

    Suggested questions

    {suggestedQuestions.map((question, index) => ( ))}
    )}
    {hasSubmitted && ( )}
    ); } const LoadingFallback = () => (

    MiniPerplx

    Loading your minimalist AI experience...

    ); const Home = () => { return ( }> ); }; export default Home;